123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- """
- =================================
- Frequency Band Selection Helpers
- =================================
- This file contains helper functions for the frequency band selection example
- """
- import numpy as np
- from mne import Epochs, events_from_annotations
- from scipy.interpolate import interp1d
- from pyriemann.estimation import Covariances, Shrinkage
- from pyriemann.classification import class_distinctiveness
- def freq_selection_class_dis(raw, subband_fmin, subband_fmax, alpha=0.4,
- band_div=50,
- tmin=0.5, tmax=2.5,
- picks=None, event_id=None,
- cv=None,
- return_class_dis=False, verbose=None):
- r"""Select optimal frequency band based on class distinctiveness measure.
- Optimal frequency band is selected by combining a filter bank with
- a heuristic based on class distinctiveness on the manifold [1]_:
- 1. Filter training raw EEG data for each sub-band of a filter bank.
- 2. Estimate covariance matrices of filtered EEG for each sub-band.
- 3. Measure the class distinctiveness of each sub-band using the
- classDis metric.
- 4. Find the optimal frequency band by starting from the sub-band
- with the largest classDis and expanding the selected frequency band
- as long as the classDis exceeds the threshold :math:`th`:
- .. math::
- th = max(classDis) - (max(classDis)−min(classDis)) × alpha
- Parameters
- ----------
- raw : Raw object
- An instance of Raw from MNE.
- subband_fmin:
- List of float that describes the subband lower bound
- subband_fmax:
- List of float that describes the subband upper bound
- alpha : float, default=0.4
- Parameter to define an appropriate threshold for each individual.
- band_div: float, default=50.
- Dividing point of low frequency bands and high frequency bands.
- tmin, tmax : float, default=0.5, 2.5
- Start and end time of the epochs in seconds, relative to
- the time-locked event.
- picks : str | array_like | slice, default=None
- Channels to include. Slices and lists of integers will be
- interpreted as channel indices.
- If None (default), all channels will pick.
- event_id : int | list of int | dict, default=None
- Id of the events to consider.
- - If dict, the keys can later be used to access associated
- events.
- - If int, a dict will be created with the id as string.
- - If a list, all events with the IDs specified in the list
- are used.
- - If None, all events will be used and a dict is created
- with string integer names corresponding to the event id integers.
- cv : cross-validation generator, default=None
- An instance of a cross validation iterator from sklearn.
- return_class_dis : bool, default=False
- Whether to return all_cv_class_dis value.
- verbose : bool, str, int, default=None
- Control verbosity of the logging output of filtering and .
- If None, use the default verbosity level.
- Returns
- -------
- all_cv_best_freq : list
- List of the selected frequency band for each hold of
- cross validation.
- all_cv_class_dis : list, optional
- List of class_dis value of each hold of cross validation.
- Notes
- -----
- .. versionadded:: 0.3.1
- References
- ----------
- .. [1] `Class-distinctiveness-based frequency band selection on the
- Riemannian manifold for oscillatory activity-based BCIs: preliminary
- results
- <https://hal.archives-ouvertes.fr/hal-03641137/>`_
- M. S. Yamamoto, F. Lotte, F. Yger, and S. Chevallier.
- 44th Annual International Conference of the IEEE Engineering
- in Medicine & Biology Society (EMBC2022), 2022.
- """
- subband_fmean = np.sqrt((subband_fmin * subband_fmax))
- n_subband = len(subband_fmin)
- low_index = subband_fmean <= band_div
- high_index = subband_fmean > band_div
- n_subband_low = len(subband_fmean[low_index])
- n_subband_high = len(subband_fmean[high_index])
- all_sub_band_cov = []
- for fmin, fmax in zip(subband_fmin, subband_fmax):
- cov_data, labels = _get_filtered_cov(raw, picks,
- event_id,
- fmin,
- fmax,
- tmin, tmax, verbose)
- all_sub_band_cov.append(cov_data)
- all_cv_best_freq = []
- all_cv_class_dis = []
- for i, (train_ind, test_ind) in enumerate(cv.split(all_sub_band_cov[0],
- labels)):
- all_class_dis = []
- for ii in range(n_subband):
- class_dis = class_distinctiveness(
- all_sub_band_cov[ii][train_ind], labels[train_ind],
- exponent=1, metric='riemann', return_num_denom=False)
- all_class_dis.append(class_dis)
- all_class_dis = np.array(all_class_dis)
- all_cv_class_dis.append(all_class_dis)
- best_freq_low = _get_best_freq_band(all_class_dis[low_index], n_subband_low, subband_fmin[low_index], subband_fmax[low_index], alpha)
- best_freq_high = _get_best_freq_band(all_class_dis[high_index], n_subband_high, subband_fmin[high_index], subband_fmax[high_index], alpha)
- all_cv_best_freq.append((best_freq_low, best_freq_high))
- if return_class_dis:
- return all_cv_best_freq, all_cv_class_dis
- else:
- return all_cv_best_freq
- def _get_filtered_cov(raw, picks, event_id, fmin, fmax, tmin, tmax, verbose):
- """Private function to apply band-pass filter and estimate
- covariance matrix."""
- best_raw_filter = raw.copy().filter(fmin, fmax, method='iir', picks=picks,
- verbose=verbose)
- events, _ = events_from_annotations(best_raw_filter, event_id=event_id,
- verbose=verbose)
- epochs = Epochs(
- best_raw_filter,
- events,
- event_id,
- tmin,
- tmax,
- proj=True,
- picks=picks,
- baseline=None,
- preload=True,
- verbose=verbose)
- labels = epochs.events[:, -1] - 2
- epochs_data = epochs.get_data(units="uV")
- cov_data = Covariances().transform(epochs_data)
- cov_data = Shrinkage().transform(cov_data)
- return cov_data, labels
- def _get_best_freq_band(all_class_dis, n_subband, subband_fmin, subband_fmax,
- alpha):
- """Private function to select frequency bands whose class dis value are
- higher than the user-specific threshold."""
- fmaxstart = np.argmax(all_class_dis)
- fmin = np.min(all_class_dis)
- fmax = np.max(all_class_dis)
- threshold_freq = fmax - (fmax - fmin) * alpha
- f0 = fmaxstart
- f1 = fmaxstart
- while f0 >= 1 and (all_class_dis[f0 - 1] >= threshold_freq):
- f0 = f0 - 1
- while f1 < n_subband - 1 and (all_class_dis[f1 + 1] >= threshold_freq):
- f1 = f1 + 1
- best_freq_f0 = subband_fmin[f0]
- best_freq_f1 = subband_fmax[f1]
- best_freq = [best_freq_f0, best_freq_f1]
- return best_freq
|