123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- import os
- import training
- import unittest
- import joblib
- from glob import glob
- from dataloaders import neo
- from bci_core.feature_extractors import FeatExtractor
- from bci_core.model import baseline_model, stacking_riemann, ChannelScaler
- import shutil
- from sklearn.utils.validation import check_is_fitted, NotFittedError
- from sklearn.pipeline import Pipeline
- from sklearn.ensemble import StackingClassifier
- class TestTraining(unittest.TestCase):
- @classmethod
- def setUpClass(cls) -> None:
- root_path = './tests/data'
- sessions = {'cylinder': ['eeg-data/2', 'eeg-data/6'], 'ball': ['eeg-data/4', 'eeg-data/5']}
- cls.event_id = {'rest': 0, 'cylinder': 1, 'ball': 2}
- raw = neo.raw_preprocessing(root_path, sessions, unify_label=True)
- raw.drop_channels(['T3', 'T4', 'A1', 'A2', 'T5', 'T6', 'M1', 'M2', 'Fp1', 'Fp2', 'F7', 'F8', 'O1', 'Oz', 'O2', 'F3', 'F4', 'Fz'])
- cls.raw = raw
-
- def test_training_baseline(self):
- model = training.train_model(self.raw, self.event_id, model_type='baseline')
- check_is_fitted(model)
- def test_saver(self):
- feat_ext = FeatExtractor(1000, lfb_bands=[(15, 30), [30, 45]], hg_bands=[(55, 95), (105, 145)])
- model_riemann = stacking_riemann(12, 12, 1, 1)
- model_baseline = baseline_model(1)
- scaler = ChannelScaler()
- event_id = {'1': 5, '0': 3}
- training.model_saver([feat_ext, scaler, model_riemann, model_baseline], './tests/data', 'baseline', 'f77cbe10a8de473992542e9f4e913a66', event_id)
- self.assertTrue(os.path.isdir(os.path.join('./tests/data', 'f77cbe10a8de473992542e9f4e913a66')))
- model_file = glob(os.path.join('./tests/data',
- 'f77cbe10a8de473992542e9f4e913a66',
- '*.pkl'))
-
- self.assertEqual(len(model_file), 1)
- name = os.path.normpath(model_file[0]).split(os.sep)
- class_name, events, date = name[-1].split('_')
- print(class_name, events, date)
- self.assertTrue(class_name == 'baseline')
- self.assertTrue(events == '0+1')
- # load model
- feat, scaler, model_riem, model_base = joblib.load(model_file[0])
- self.assertTrue(isinstance(feat, FeatExtractor))
- self.assertTrue(isinstance(scaler, ChannelScaler))
- self.assertTrue(isinstance(model_riem, StackingClassifier))
- self.assertTrue(isinstance(model_base, Pipeline))
- shutil.rmtree(os.path.join('./tests/data', 'f77cbe10a8de473992542e9f4e913a66'))
|