import os import training import unittest import joblib from glob import glob from dataloaders import neo from bci_core.feature_extractors import FeatExtractor from bci_core.model import baseline_model, stacking_riemann, ChannelScaler import shutil from sklearn.utils.validation import check_is_fitted, NotFittedError from sklearn.pipeline import Pipeline from sklearn.ensemble import StackingClassifier class TestTraining(unittest.TestCase): @classmethod def setUpClass(cls) -> None: root_path = './tests/data' sessions = {'cylinder': ['eeg-data/2', 'eeg-data/6'], 'ball': ['eeg-data/4', 'eeg-data/5']} cls.event_id = {'rest': 0, 'cylinder': 1, 'ball': 2} raw = neo.raw_preprocessing(root_path, sessions, rename_event=True) raw.drop_channels(['T3', 'T4', 'A1', 'A2', 'T5', 'T6', 'M1', 'M2', 'Fp1', 'Fp2', 'F7', 'F8', 'O1', 'Oz', 'O2', 'F3', 'F4', 'Fz']) cls.raw = raw def test_training_baseline(self): model = training.train_model(self.raw, self.event_id, model_type='baseline') check_is_fitted(model) def test_saver(self): feat_ext = FeatExtractor(1000, lfb_bands=[(15, 30), [30, 45]], hg_bands=[(55, 95), (105, 145)]) model_riemann = stacking_riemann(12, 12, 1, 1) model_baseline = baseline_model(1) scaler = ChannelScaler() event_id = {'1': 5, '0': 3} training.model_saver([feat_ext, scaler, model_riemann, model_baseline], './tests/data', 'baseline', 'f77cbe10a8de473992542e9f4e913a66', event_id) self.assertTrue(os.path.isdir(os.path.join('./tests/data', 'f77cbe10a8de473992542e9f4e913a66'))) model_file = glob(os.path.join('./tests/data', 'f77cbe10a8de473992542e9f4e913a66', '*.pkl')) self.assertEqual(len(model_file), 1) name = os.path.normpath(model_file[0]).split(os.sep) class_name, events, date = name[-1].split('_') print(class_name, events, date) self.assertTrue(class_name == 'baseline') self.assertTrue(events == '0+1') # load model feat, scaler, model_riem, model_base = joblib.load(model_file[0]) self.assertTrue(isinstance(feat, FeatExtractor)) self.assertTrue(isinstance(scaler, ChannelScaler)) self.assertTrue(isinstance(model_riem, StackingClassifier)) self.assertTrue(isinstance(model_base, Pipeline)) shutil.rmtree(os.path.join('./tests/data', 'f77cbe10a8de473992542e9f4e913a66'))