import mne from mne.time_frequency import psd_array_welch import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np from .utils import cut_epochs from .feature_extractors import filterbank_extractor def snapshot_brain(fig_3d, info, data=None, show_name=False): if data is not None: cmap = mpl.cm.viridis norm = mpl.colors.Normalize(vmin=data.min(), vmax=data.max()) mappable = mpl.cm.ScalarMappable(norm=norm, cmap=cmap) directions = [0, 180] # right, left figs = [] for d in directions: # right mne.viz.set_3d_view(fig_3d, azimuth=d, elevation=70) xy, im = mne.viz.snapshot_brain_montage(fig_3d, info, hide_sensors=False) fig, ax = plt.subplots(figsize=(5, 5)) ax.imshow(im, interpolation='none') ax.set_axis_off() if data is not None: fig.subplots_adjust(right=0.8) cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) fig.colorbar(mappable, cax=cbar_ax) if show_name: xy_pts = np.vstack([xy[ch] for ch in info["ch_names"]]) for i, pos in enumerate(xy_pts): ax.text(*pos, i, color='white') figs.append(fig) return figs def plot_time_frequency(data, events, sfreq, freqs, epoch_time_range, event_id): """ data: numpy.ndarray, (n_ch, n_times) events: ndarray (n_events, 3), the first column is onset index, the second is duration, and the third is event type freqs: numpy.ndarray, frequency bands to filter epoch_time_range: tuple, (t_onset, t_offset) event_id: dict {id: name} """ # extract power, (n_ch, n_freqs, n_times) power = filterbank_extractor(data, sfreq, freqs, reshape_freqs_dim=False) power = 10 * np.log10(power) # normalize by freqs power -= power.mean(axis=(0, 2), keepdims=True) power /= power.std(axis=(0, 2), keepdims=True) # image vlim mean_, std_ = power.mean(), power.std() # cut epochs epochs = cut_epochs((*epoch_time_range, sfreq), power, events[:, 0]) # average by event type classes = np.unique(events[:, -1]) fig, axes = plt.subplots(1, len(classes), figsize=(10, 5)) for ax, y_ in zip(axes, classes): average_power = epochs[events[:, -1] == y_].mean(axis=(0, 1)) # keep freqencies and times im = ax.imshow(average_power, cmap='RdBu_r', vmin=mean_ - 0.5 * std_, vmax=mean_ + 0.5 * std_, aspect='auto', origin='lower') ax.set_xticks(np.linspace(-0.5, average_power.shape[1] - 0.5, 5)) ax.set_xticklabels([f'{i:.2f}' for i in np.linspace(*epoch_time_range, 5)]) ax.set_yticks(np.linspace(-0.5, average_power.shape[0] - 0.5, 10)) ax.set_yticklabels([f'{int(i):3d}' for i in np.linspace(freqs[0], freqs[-1], 10)]) ax.set_title(event_id[y_]) fig.subplots_adjust(right=0.8) cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) fig.colorbar(im, cax=cbar_ax) return fig def plot_ersd(data, events, sfreq, epoch_time_range, event_id, rest_event=0): event_desc = {v:k for k, v in event_id.items()} epochs = cut_epochs((*epoch_time_range, sfreq), data, events[:, 0]) psd, freqs = psd_array_welch(epochs, sfreq) mean_psd_rest = psd[events[:, -1] == rest_event].mean(axis=(0, 1)) ersds = [] for e in np.unique(events[:, -1]): if e != rest_event: mean_psd = psd[events[:, -1] == e].mean(axis=(0, 1)) ersd = mean_psd / mean_psd_rest - 1 ersds.append((event_desc[e], ersd)) fig, axes = plt.subplots(1, len(ersds), figsize=(5 * len(ersds), 5)) if len(ersds) == 1: axes = [axes] for i, ersd in enumerate(ersds): axes[i].plot(freqs, ersd[1]) axes[i].set_title(ersd[0]) axes[i].set_ylabel('ERSD') axes[i].set_xlabel('Frequency [Hz]') return fig