1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- import unittest
- import os
- import numpy as np
- from glob import glob
- import shutil
- import mne
- from bci_core import utils as ana_utils
- from bci_core.online import model_loader
- from training import train_model
- from dataloaders import neo
- from online_sim import simulation, _construct_model_event
- from validation import val_by_epochs
- class TestOnlineSim(unittest.TestCase):
- @classmethod
- def setUpClass(cls):
- root_path = './tests/data'
- raw_train, cls.event_id = neo.raw_loader(root_path, {'flex': ['1']}, reref_method='bipolar')
- cls.raw_val, _ = neo.raw_loader(root_path, {'flex': ['2']},
- upsampled_epoch_length=None,
- reref_method='bipolar')
-
- # train with the first half
- model = train_model(raw_train, event_id=cls.event_id, model_type='baseline')
- ana_utils.model_saver(model, './tests/data/', 'baseline', 'test', cls.event_id)
- cls.model_path = glob(os.path.join('./tests/data/', 'test', '*.pkl'))[0]
-
- @classmethod
- def tearDownClass(cls) -> None:
- shutil.rmtree(os.path.join('./tests/data/', 'test'))
- return super().tearDownClass()
-
- def test_event_metric(self):
- event_gt = np.array([[0, 0, 0], [5, 0, 1], [7, 0, 0], [9, 0, 2]])
- event_pred = np.array([[1, 0, 0], [4, 0, 1], [6, 0, 1], [7, 0, 0], [10, 0, 1], [11, 0, 2]])
- fs = 1
- precision, recall, f1_score = ana_utils.event_metric(event_gt, event_pred, fs, ignore_event=(0,))
- self.assertEqual(f1_score, 2 / 3)
- self.assertEqual(precision, 1 / 2)
- self.assertEqual(recall, 1)
- def test_construct_event(self):
- seq_1 = [(1, -1), (2, -1), (3, -1), (4, 1)]
- seq_2 = [(1, 0), (2, 0), (4, 1)]
- gt = [[1, 0, 0], [4, 0, 1]]
- ret_ = _construct_model_event(seq_1, 1, start_cond=0)
- self.assertTrue(np.allclose(gt, ret_))
- ret_ = _construct_model_event(seq_2, 1, start_cond=0)
- self.assertTrue(np.allclose(gt, ret_))
- def test_sim(self):
- model = model_loader(self.model_path,
- state_change_threshold=0.7,
- state_trans_prob=0.7)
- metric_hmm, metric_nohmm, figs = simulation(self.raw_val, self.event_id, model=model, epoch_length=1., step_length=0.1)
- figs[0].savefig('./tests/data/pred_hmm.pdf')
- figs[1].savefig('./tests/data/pred_naive.pdf')
- self.assertTrue(metric_hmm[-2] > 0.7) # f1-score (with hmm)
- self.assertTrue(metric_nohmm[-2] < 0.4) # f1-score (without hmm)
-
- def test_val_model(self):
- metrices, fig_conf = val_by_epochs(self.raw_val, self.model_path, self.event_id, 1.)
- fig_conf.savefig('./tests/data/conf.pdf')
- self.assertGreater(metrices[0], 0.85)
- self.assertGreater(metrices[1], 0.7)
- self.assertGreater(metrices[2], 0.7)
- if __name__ == '__main__':
- unittest.main()
|