2
0

online_sim.py 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. '''
  2. 模型模拟在线测试脚本
  3. 在线模式测试:event f1-score and decision trace
  4. '''
  5. import numpy as np
  6. import matplotlib.pyplot as plt
  7. import mne
  8. import yaml
  9. import os
  10. import argparse
  11. import logging
  12. from sklearn.metrics import accuracy_score
  13. from dataloaders import neo
  14. import bci_core.online as online
  15. import bci_core.utils as bci_utils
  16. import bci_core.viz as bci_viz
  17. from settings.config import settings
  18. logging.basicConfig(level=logging.DEBUG)
  19. logger = logging.getLogger(__name__)
  20. config_info = settings.CONFIG_INFO
  21. def parse_args():
  22. parser = argparse.ArgumentParser(
  23. description='Model validation'
  24. )
  25. parser.add_argument(
  26. '--subj',
  27. dest='subj',
  28. help='Subject name',
  29. default=None,
  30. type=str
  31. )
  32. parser.add_argument(
  33. '--state-change-threshold',
  34. '-scth',
  35. dest='state_change_threshold',
  36. help='Threshold for HMM state change',
  37. default=0.75,
  38. type=float
  39. )
  40. parser.add_argument(
  41. '--state-trans-prob',
  42. '-stp',
  43. dest='state_trans_prob',
  44. help='Transition probability for HMM state change',
  45. default=0.8,
  46. type=float
  47. )
  48. parser.add_argument(
  49. '--model-filename',
  50. dest='model_filename',
  51. help='Model filename',
  52. default=None,
  53. type=str
  54. )
  55. return parser.parse_args()
  56. class DataGenerator:
  57. def __init__(self, fs, X, epoch_step=1.):
  58. self.fs = int(fs)
  59. self.X = X
  60. self.epoch_step = epoch_step
  61. def get_data_batch(self, current_index):
  62. # return epoch_step length batch
  63. # create mne object
  64. ind = int(self.epoch_step * self.fs)
  65. data = self.X[:, current_index - ind:current_index].copy()
  66. return self.fs, [], data
  67. def loop(self, step_size=0.1):
  68. step = int(step_size * self.fs)
  69. for i in range(self.fs, self.X.shape[1] + 1, step):
  70. yield i / self.fs, self.get_data_batch(i)
  71. def _evaluation_loop(raw, events, model_hmm, epoch_length, step_length, event_trial_length):
  72. val_data = raw.get_data()
  73. fs = raw.info['sfreq']
  74. data_gen = DataGenerator(fs, val_data, epoch_step=epoch_length)
  75. decision_with_hmm = []
  76. decision_without_hmm = []
  77. probs = []
  78. probs_naive = []
  79. for time, data in data_gen.loop(step_length):
  80. step_p, cls = model_hmm.viterbi(data, return_step_p=True)
  81. if cls >=0:
  82. cls = model_hmm.model.classes_[cls]
  83. decision_with_hmm.append((time, cls)) # map to unified label
  84. decision_without_hmm.append((time, model_hmm.model.classes_[np.argmax(step_p)]))
  85. probs.append(model_hmm.probability)
  86. # TODO: match multiclass
  87. probs_naive.append(step_p[1])
  88. probs = np.array(probs)
  89. probs_naive = np.array(probs_naive)
  90. events_pred = _construct_model_event(decision_with_hmm, fs)
  91. events_pred_naive = _construct_model_event(decision_without_hmm, fs)
  92. p_hmm, r_hmm, f1_hmm = bci_utils.event_metric(event_true=events, event_pred=events_pred, fs=fs)
  93. p_n, r_n, f1_n = bci_utils.event_metric(events, events_pred_naive, fs=fs)
  94. stim_true = _event_to_stim_channel(events, len(raw.times), trial_length=int(event_trial_length * fs))
  95. stim_pred = _event_to_stim_channel(events_pred, len(raw.times))
  96. stim_pred_naive = _event_to_stim_channel(events_pred_naive, len(raw.times))
  97. accu_hmm = accuracy_score(stim_true, stim_pred)
  98. accu_naive = accuracy_score(stim_true, stim_pred_naive)
  99. # TODO: match multiclass (one-hot)
  100. fig_pred, axes = plt.subplots(5, 1, sharex=True, figsize=(10, 8))
  101. axes[0].set_title('True states')
  102. axes[0].plot(raw.times, stim_true)
  103. axes[0].set_axis_off()
  104. axes[1].set_title('With HMM (probs)')
  105. bci_viz.plot_state_seq_with_cue((raw.times[0], raw.times[-1]), stim_true, probs, ax=axes[1])
  106. axes[2].set_title('Without HMM (probs)')
  107. bci_viz.plot_state_seq_with_cue((raw.times[0], raw.times[-1]), stim_true, probs_naive, ax=axes[2])
  108. axes[3].set_title('With HMM')
  109. bci_viz.plot_state_seq_with_cue((raw.times[0], raw.times[-1]), stim_true, stim_pred, ax=axes[3])
  110. axes[4].set_title('Without HMM')
  111. bci_viz.plot_state_seq_with_cue((raw.times[0], raw.times[-1]), stim_true, stim_pred_naive, ax=axes[4])
  112. return fig_pred, (p_hmm, r_hmm, f1_hmm, accu_hmm), (p_n, r_n, f1_n, accu_naive)
  113. def simulation(raw_val, event_id, model,
  114. epoch_length=1.,
  115. step_length=0.1,
  116. event_trial_length=5.):
  117. """模型验证接口,使用指定数据进行验证,绘制ersd map
  118. Args:
  119. raw (mne.io.Raw)
  120. event_id (dict)
  121. model: validate existing model,
  122. epoch_length (float): batch data length, default 1 (s)
  123. step_length (float): data step length, default 0.1 (s)
  124. event_trial_length (float):
  125. Returns:
  126. None
  127. """
  128. fs = raw_val.info['sfreq']
  129. events_val, _ = mne.events_from_annotations(raw_val, event_id)
  130. # run with and without hmm
  131. fig_pred, metric_hmm, metric_naive = _evaluation_loop(raw_val,
  132. events_val,
  133. model,
  134. epoch_length,
  135. step_length,
  136. event_trial_length=event_trial_length)
  137. return metric_hmm, metric_naive, fig_pred
  138. def _construct_model_event(decision_seq, fs, start_cond=0):
  139. def _filter_seq(decision_seq):
  140. new_seq = [(decision_seq[0][0], start_cond)]
  141. for i in range(1, len(decision_seq)):
  142. if decision_seq[i][1] == -1:
  143. new_seq.append((decision_seq[i][0], new_seq[-1][1]))
  144. else:
  145. new_seq.append(decision_seq[i])
  146. return new_seq
  147. decision_seq = _filter_seq(decision_seq)
  148. last_state = decision_seq[0][1]
  149. events = [(int(decision_seq[0][0] * fs), 0, last_state)]
  150. for i in range(1, len(decision_seq)):
  151. time, label = decision_seq[i]
  152. if label != last_state:
  153. last_state = label
  154. events.append([int(time * fs), 0, label])
  155. return np.array(events)
  156. def _event_to_stim_channel(events, time_length, trial_length=None):
  157. x = np.zeros(time_length)
  158. for i in range(0, len(events) - 1):
  159. if trial_length is not None:
  160. x[events[i, 0]: events[i, 0] + trial_length] = events[i, 2]
  161. else:
  162. x[events[i, 0]: events[i + 1, 0] - 1] = events[i, 2]
  163. return x
  164. if __name__ == '__main__':
  165. args = parse_args()
  166. subj_name = args.subj
  167. data_dir = f'./data/{subj_name}/'
  168. model_path = f'./static/models/{subj_name}/{args.model_filename}'
  169. with open(os.path.join(data_dir, 'val_info.yml'), 'r') as f:
  170. info = yaml.safe_load(f)
  171. sessions = info['sessions']
  172. # preprocess raw
  173. trial_time = 5.
  174. raw, event_id = neo.raw_loader(data_dir, sessions,
  175. ori_epoch_length=trial_time,
  176. upsampled_epoch_length=None)
  177. # load model
  178. input_kwargs = {
  179. 'state_trans_prob': args.state_trans_prob,
  180. 'state_change_threshold': args.state_change_threshold
  181. }
  182. model_hmm = online.model_loader(model_path, **input_kwargs)
  183. # do validations
  184. metric_hmm, metric_naive, fig_pred = simulation(raw,
  185. event_id,
  186. model=model_hmm,
  187. epoch_length=config_info['buffer_length'],
  188. step_length=0.1,
  189. event_trial_length=trial_time)
  190. fig_pred.savefig(os.path.join(data_dir, 'pred.pdf'))
  191. logger.info(f'With HMM: precision: {metric_hmm[0]:.4f}, recall: {metric_hmm[1]:.4f}, f1_score: {metric_hmm[2]:.4f}, accuracy: {metric_hmm[3]:.4f}')
  192. logger.info(f'Without HMM: precision: {metric_naive[0]:.4f}, recall: {metric_naive[1]:.4f}, f1_score: {metric_naive[2]:.4f}, accuracy: {metric_naive[3]:.4f}')
  193. plt.show()