123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- import joblib
- import numpy as np
- import random
- import logging
- import os
- from scipy import signal
- from .utils import parse_model_type, reref
- from .pipeline import data_evaluation
- logger = logging.getLogger(__name__)
- class Controller:
- """在线控制接口
- 运行时主要调用decision方法,
- 每次气动手反馈后调用reset_buffer方法,用以跳过气动手不应期
- Args:
- virtual_feedback_rate (float): 0-1之间浮点数,控制假反馈占比
- model_path (string): 模型文件路径
- buffer_steps (int):
- """
- def __init__(self,
- virtual_feedback_rate=1.,
- real_feedback_model=None,
- reref_method='monopolar'):
-
- self.real_feedback_model = real_feedback_model
- self.virtual_feedback_rate = virtual_feedback_rate
- self.reref_method = reref_method
- def step_decision(self, data, true_label=None):
- """抓握训练调用接口,只进行单次判决,不涉及马尔可夫过程,
- 假反馈的错误反馈默认输出为10000
- Args:
- data (mne.io.RawArray): 数据
- true_label (None or int): 训练时假反馈的真实标签
- Return:
- int: 统一化标签 (-1: keep, 0: rest, 1: cylinder, 2: ball, 3: flex, 4: double, 5: treble)
- """
- virtual_feedback = self.virtual_feedback(true_label)
- logger.debug('step_decision: virtual feedback: {}'.format(virtual_feedback))
- if virtual_feedback is not None:
- return virtual_feedback
- if self.real_feedback_model is not None:
- fs, data = self.parse_data(data)
- p = self.real_feedback_model.step_probability(fs, data)
- logger.debug('step_decison: model probability: {}'.format(str(p)))
- pred = np.argmax(p)
- real_decision = self.real_feedback_model.model.classes_[pred]
- return real_decision
- else:
- raise ValueError('Neither decision model nor true label are given')
-
- def decision(self, data, true_label=None):
- """决策主要方法,输出逻辑如下:
- 如果有决策模型,无论是否有true_label,都会使用模型进行一步决策计算并填入buffer(不一定返回)
- 如果有true_label(训练模式),产生一个随机数确定本trial是否为假反馈,
- 是假反馈,产生一个随机数确定本trial产生正确or错误的假反馈,假反馈的标签为10000
- 不是假反馈,使用模型决策
- 如果没有true_label(测试模式),直接使用模型决策
- 模型决策逻辑:
- 根据模型记录的last_state,
- 如果当前state和last_state相同,输出-1
- 如果当前state和last_state不同,输出当前state
- Args:
- data (mne.io.RawArray): 数据
- true_label (None or int): 训练时假反馈的真实标签
- Return:
- int: 统一化标签 (-1: keep, 0: rest, 1: cylinder, 2: ball, 3: flex, 4: double, 5: treble)
- """
- if self.real_feedback_model is not None:
- fs, data = self.parse_data(data)
- real_decision = self.real_feedback_model.viterbi(fs, data)
- # map to unified label
- if real_decision != -1:
- real_decision = self.real_feedback_model.model.classes_[real_decision]
-
- virtual_feedback = self.virtual_feedback(true_label)
- if virtual_feedback is not None:
- return virtual_feedback
-
- # true_label is None or not running virtual feedback in this trial
- # if no real model, raise ValueError
- if self.real_feedback_model is None:
- raise ValueError('Neither decision model nor true label are given')
- return real_decision
- def virtual_feedback(self, true_label=None):
- if true_label is not None:
- p = random.random()
- if p < self.virtual_feedback_rate: # virtual feedback (error rate 0.2)
- p_correct = random.random()
- if p_correct < 0.8:
- return true_label
- else:
- return 10000
- return None
-
- def parse_data(self, data):
- fs, event, data_array = data
- # do preprocessing
- data_array = reref(data_array, self.reref_method)
- return fs, data_array
- class HMMModel:
- """HMMModel 是一个基于隐马尔可夫模型(Hidden Markov Model, HMM)的框架,用于建模状态转移和更新。"""
- def __init__(self,
- transmat=None,
- n_classes=2,
- state_trans_prob=0.6,
- state_change_threshold=0.5,
- momentum=0.5):
- """
- 初始化HMM模型。
- transmat: 状态转移矩阵,如果为 None,则自动生成一个简单的转移矩阵。
- n_classes: 状态的数量。
- state_trans_prob: 状态保持不变的概率。
- state_change_threshold: 状态改变的阈值。
- momentum: 用于更新状态概率的动量因子。
- """
- self.n_classes = n_classes
- self.set_current_state(0)
- self.state_change_threshold = state_change_threshold
- self.hold_state = False
- if transmat is None:
- # build state transition matrix
- self.state_trans_matrix = np.zeros((n_classes, n_classes))
- # fill diagonal
- np.fill_diagonal(self.state_trans_matrix, state_trans_prob)
- # fill 0 -> each state,
- self.state_trans_matrix[0, 1:] = (1 - state_trans_prob) / (n_classes - 1)
- self.state_trans_matrix[1:, 0] = 1 - state_trans_prob
- else:
- if isinstance(transmat, str):
- transmat = np.loadtxt(transmat)
- self.state_trans_matrix = transmat
- # momentum factor
- self.momentum = momentum
-
- def set_current_state(self, current_state):
- self._last_state = current_state
- self._probability = np.zeros(self.n_classes)
- self._probability[current_state] = 1.
-
- def step_probability(self, fs, data):
- raise NotImplementedError
-
- def offset_updater(self, decision):
- if decision == 0:
- if self.hold_state:
- self.hold_state = False
- return 0
- else:
- self.hold_state = True
- return -1
- else:
- return decision
-
-
- def viterbi(self, fs, data, return_step_p=False):
- """
- Interface for class decision
- """
- p = self.step_probability(fs, data)
- if return_step_p:
- return p, self.update_state(p)
- else:
- return self.update_state(p)
-
- def update_state(self, current_p):
- # veterbi algorithm
- prob = (self.state_trans_matrix * self._probability.T).sum(axis=1) * current_p
- # normalize
- prob /= np.sum(prob)
- # momentum
- self._probability = self.momentum * self._probability + (1 - self.momentum) * prob
- logger.debug("viterbi probability, {}".format(str(self._probability)))
- current_state = np.argmax(self._probability)
- if current_state == self._last_state:
- return -1
- else:
- if self._probability[current_state] > self.state_change_threshold:
- self.set_current_state(current_state)
- return self.offset_updater(current_state)
- else:
- return -1
-
- @property
- def probability(self):
- return self._probability.copy()
- class ClfEmissionHMM(HMMModel):
- """
- ClfEmissionHMM 则是 HMMModel 的一个扩展,结合了分类模型的输出作为HMM的发射概率。
- """
- def __init__(self, model, **kwargs):
- """
- 初始化分类器发射的HMM模型。
- model: 包含特征提取器、嵌入器和分类模型的元组或模型文件路径。
- """
- if isinstance(model, str):
- model = joblib.load(model)
- self.feat_extractor, self.embedder, self.model = model
- super(ClfEmissionHMM, self).__init__(n_classes=len(self.model.classes_), **kwargs)
-
- def step_probability(self, fs, data):
- p = data_evaluation([self.feat_extractor, self.embedder, self.model], data, fs, None, None, False).squeeze()
- return p
- def model_loader(model_path, **kwargs):
- """
- 模型如果存在训练好的transmat,会直接load
- """
- model_root, model_filename = os.path.dirname(model_path), os.path.basename(model_path)
- model_name = model_filename.split('.')[0]
- transmat_path = os.path.join(model_root, model_name + '_transmat.txt')
- if os.path.isfile(transmat_path):
- transmat = np.loadtxt(transmat_path)
- else:
- transmat = None
- kwargs['transmat'] = transmat
- return ClfEmissionHMM(model_path, **kwargs)
|