online.py 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. import joblib
  2. import numpy as np
  3. import random
  4. import logging
  5. from scipy import signal
  6. import mne
  7. from .feature_extractors import filterbank_extractor
  8. from .utils import parse_model_type
  9. class Controller:
  10. """在线控制接口
  11. 运行时主要调用decision方法,
  12. 每次气动手反馈后调用reset_buffer方法,用以跳过气动手不应期
  13. Args:
  14. virtual_feedback_rate (float): 0-1之间浮点数,控制假反馈占比
  15. model_path (string): 模型文件路径
  16. buffer_steps (int):
  17. """
  18. def __init__(self,
  19. virtual_feedback_rate=1.,
  20. model_path=None,
  21. state_change_threshold=0.6):
  22. if (model_path is None) or (model_path == 'None'):
  23. self.real_feedback_model = None
  24. else:
  25. self.model_type, _ = parse_model_type(model_path)
  26. if self.model_type == 'baseline':
  27. self.real_feedback_model = BaselineHMM(model_path, state_change_threshold=state_change_threshold)
  28. else:
  29. raise NotImplementedError
  30. self.virtual_feedback_rate = virtual_feedback_rate
  31. def step_decision(self, data, true_label=None):
  32. """抓握训练调用接口,只进行单次判决,不涉及马尔可夫过程,
  33. 假反馈的错误反馈默认输出为10000
  34. Args:
  35. data (mne.io.RawArray): 数据
  36. true_label (None or int): 训练时假反馈的真实标签
  37. Return:
  38. int: 统一化标签 (-1: keep, 0: rest, 1: cylinder, 2: ball, 3: flex, 4: double, 5: treble)
  39. """
  40. virtual_feedback = self.virtual_feedback(true_label)
  41. logging.debug('step_decision: virtual feedback: {}'.format(virtual_feedback))
  42. if virtual_feedback is not None:
  43. return virtual_feedback
  44. if self.real_feedback_model is not None:
  45. fs, data = self.real_feedback_model.parse_data(data)
  46. p = self.real_feedback_model.step_probability(fs, data)
  47. logging.debug('step_decison: model probability: {}'.format(str(p)))
  48. pred = np.argmax(p)
  49. real_decision = self.real_feedback_model.model.classes_[pred]
  50. return real_decision
  51. else:
  52. raise ValueError('Neither decision model nor true label are given')
  53. def decision(self, data, true_label=None):
  54. """决策主要方法,输出逻辑如下:
  55. 如果有决策模型,无论是否有true_label,都会使用模型进行一步决策计算并填入buffer(不一定返回)
  56. 如果有true_label(训练模式),产生一个随机数确定本trial是否为假反馈,
  57. 是假反馈,产生一个随机数确定本trial产生正确or错误的假反馈,假反馈的标签为10000
  58. 不是假反馈,使用模型决策
  59. 如果没有true_label(测试模式),直接使用模型决策
  60. 模型决策逻辑:
  61. 根据模型记录的last_state,
  62. 如果当前state和last_state相同,输出-1
  63. 如果当前state和last_state不同,输出当前state
  64. Args:
  65. data (mne.io.RawArray): 数据
  66. true_label (None or int): 训练时假反馈的真实标签
  67. Return:
  68. int: 统一化标签 (-1: keep, 0: rest, 1: cylinder, 2: ball, 3: flex, 4: double, 5: treble)
  69. """
  70. if self.real_feedback_model is not None:
  71. real_decision = self.real_feedback_model.verterbi(data)
  72. # map to unified label
  73. if real_decision != -1:
  74. real_decision = self.real_feedback_model.model.classes_[real_decision]
  75. virtual_feedback = self.virtual_feedback(true_label)
  76. if virtual_feedback is not None:
  77. return virtual_feedback
  78. # true_label is None or not running virtual feedback in this trial
  79. # if no real model, raise ValueError
  80. if self.real_feedback_model is None:
  81. raise ValueError('Neither decision model nor true label are given')
  82. return real_decision
  83. def virtual_feedback(self, true_label=None):
  84. if true_label is not None:
  85. p = random.random()
  86. if p < self.virtual_feedback_rate: # virtual feedback (error rate 0.2)
  87. p_correct = random.random()
  88. if p_correct < 0.8:
  89. return true_label
  90. else:
  91. return 10000
  92. return None
  93. def set_state(self, target_state=None):
  94. if self.real_feedback_model is not None:
  95. self.real_feedback_model.set_current_state(target_state)
  96. def reset_buffer(self):
  97. # call after every real feedback
  98. if self.real_feedback_model is not None:
  99. self.real_feedback_model.reset_state()
  100. class HMMModel:
  101. def __init__(self, n_classes=2, state_trans_prob=0.6, state_change_threshold=0.7):
  102. self.n_classes = n_classes
  103. self._probability = np.ones(n_classes) / n_classes
  104. self._last_state = 0
  105. self.state_change_threshold = state_change_threshold
  106. # TODO: train with daily use data
  107. # build state transition matrix
  108. self.state_trans_matrix = np.zeros((n_classes, n_classes))
  109. # fill diagonal
  110. np.fill_diagonal(self.state_trans_matrix, state_trans_prob)
  111. # fill 0 -> each state,
  112. self.state_trans_matrix[0, 1:] = (1 - state_trans_prob) / (n_classes - 1)
  113. self.state_trans_matrix[1:, 0] = 1 - state_trans_prob
  114. def reset_state(self):
  115. self._last_state = 0
  116. self._probability = np.ones(self.n_classes) / self.n_classes
  117. def set_current_state(self, current_state):
  118. self._last_state = current_state
  119. self._probability = np.zeros(self.n_classes)
  120. self._probability[current_state] = 1
  121. def step_probability(self, fs, data):
  122. # do preprocessing here
  123. # common average
  124. data -= data.mean(axis=0)
  125. return data
  126. def parse_data(self, data):
  127. fs, event, data_array = data
  128. return fs, data_array
  129. def verterbi(self, data):
  130. """
  131. Interface for class decision
  132. """
  133. fs, data = self.parse_data(data)
  134. p = self.step_probability(fs, data)
  135. return self.update_state(p)
  136. def update_state(self, current_p):
  137. # veterbi algorithm
  138. self._probability = (self.state_trans_matrix * self._probability.T).sum(axis=1) * current_p
  139. # normalize
  140. self._probability /= np.sum(self._probability)
  141. logging.debug("viterbi probability, {}".format(str(self._probability)))
  142. current_state = np.argmax(self._probability)
  143. if current_state == self._last_state:
  144. return -1
  145. else:
  146. if self._probability[current_state] > self.state_change_threshold:
  147. self.set_current_state(current_state)
  148. return current_state
  149. else:
  150. return -1
  151. @property
  152. def probability(self):
  153. return np.max(self._probability[1:]) # largest prob except the rest state
  154. class BaselineHMM(HMMModel):
  155. def __init__(self, model, **kwargs):
  156. if isinstance(model, str):
  157. self.model = joblib.load(model)
  158. else:
  159. self.model = model
  160. self.freqs = np.arange(20, 150, 15)
  161. super(BaselineHMM, self).__init__(n_classes=len(self.model.classes_), **kwargs)
  162. def step_probability(self, fs, data):
  163. """Step
  164. """
  165. data = super(BaselineHMM, self).step_probability(fs, data)
  166. # filter data
  167. filter_bank_data = filterbank_extractor(data, fs, self.freqs, reshape_freqs_dim=True)
  168. # downsampling
  169. decimate_rate = np.sqrt(fs / 10).astype(np.int16)
  170. filter_bank_data = signal.decimate(filter_bank_data, decimate_rate, axis=-1, zero_phase=True)
  171. filter_bank_data = signal.decimate(filter_bank_data, decimate_rate, axis=-1, zero_phase=True)
  172. # predict proba
  173. p = self.model.predict_proba(filter_bank_data[None]).squeeze()
  174. return p
  175. class RiemannHMM(HMMModel):
  176. def __init__(self, model, **kwargs):
  177. if isinstance(model, str):
  178. self.feat_extractor, self.scaler, self.cov, self.model = joblib.load(model)
  179. else:
  180. self.feat_extractor, self.scaler, self.cov, self.model = model
  181. super(RiemannHMM, self).__init__(n_classes=len(self.model.classes_), **kwargs)
  182. def step_probability(self, fs, data):
  183. """Step
  184. """
  185. data = super(RiemannHMM, self).step_probability(fs, data)
  186. data = self.feat_extractor.transform(data)
  187. # scale data
  188. data = self.scaler.transform(data)
  189. # compute cov
  190. data = self.cov.transform(data)
  191. # predict proba
  192. p = self.model.predict_proba(data[None]).squeeze()
  193. return p