12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- import unittest
- import os
- import numpy as np
- from glob import glob
- import shutil
- from bci_core import utils as ana_utils
- from bci_core.online import model_loader
- from training import train_model, model_saver
- from dataloaders import neo
- from online_sim import simulation
- from validation import val_by_epochs
- class TestOnlineSim(unittest.TestCase):
- @classmethod
- def setUpClass(cls):
- root_path = './tests/data'
- raw, cls.event_id = neo.raw_loader(root_path, {'flex': ['1', '2']})
- cls.raw = raw
- # split into 2 pieces
- t_min, t_max = raw.times[0], raw.times[-1]
- t_mid = raw.times[len(raw.times) // 2]
- raw_train = raw.copy().crop(tmin=t_min, tmax=t_mid, include_tmax=True)
- cls.raw_val = raw.copy().crop(tmin=t_mid, tmax=t_max)
- # reconstruct single event for validation
- if cls.raw_val.annotations.onset[0] > t_mid:
- # correct time by first timestamp
- cls.raw_val.annotations.onset -= t_mid
-
- # train with the first half
- model = train_model(raw_train, event_id=cls.event_id, model_type='baseline')
- model_saver(model, './tests/data/', 'baseline', 'test', cls.event_id)
- cls.model_path = glob(os.path.join('./tests/data/', 'test', '*.pkl'))[0]
-
- @classmethod
- def tearDownClass(cls) -> None:
- shutil.rmtree(os.path.join('./tests/data/', 'test'))
- return super().tearDownClass()
-
- def test_event_metric(self):
- event_gt = np.array([[0, 0, 0], [5, 0, 1], [7, 0, 0], [9, 0, 2]])
- event_pred = np.array([[1, 0, 0], [4, 0, 1], [6, 0, 1], [7, 0, 0], [10, 0, 1], [11, 0, 2]])
- fs = 1
- precision, recall, f1_score = ana_utils.event_metric(event_gt, event_pred, fs, ignore_event=(0,))
- self.assertEqual(f1_score, 2 / 3)
- self.assertEqual(precision, 1 / 2)
- self.assertEqual(recall, 1)
- def test_sim(self):
- model = model_loader(self.model_path,
- state_change_threshold=0.7,
- state_trans_prob=0.7)
- metric_hmm, metric_nohmm, fig_pred = simulation(self.raw, self.event_id, model=model, epoch_length=1., step_length=0.1)
- fig_pred.savefig('./tests/data/pred.pdf')
- self.assertTrue(metric_hmm[-2] > 0.3) # f1-score (with hmm)
- self.assertTrue(metric_nohmm[-2] < 0.15) # f1-score (without hmm)
-
- def test_val_model(self):
- metrices, fig_conf = val_by_epochs(self.raw_val, self.model_path, self.event_id, 1.)
- fig_conf.savefig('./tests/data/conf.pdf')
- self.assertGreater(metrices[0], 0.85)
- self.assertGreater(metrices[1], 0.7)
- self.assertGreater(metrices[2], 0.7)
- if __name__ == '__main__':
- unittest.main()
|