123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- import mne
- from mne.time_frequency import psd_array_multitaper
- import matplotlib.pyplot as plt
- import matplotlib as mpl
- import numpy as np
- from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
- from .utils import cut_epochs
- from .feature_extractors import filterbank_extractor
- def snapshot_brain(fig_3d, info, data=None, show_name=False):
- if data is not None:
- cmap = mpl.cm.viridis
- norm = mpl.colors.Normalize(vmin=data.min(), vmax=data.max())
- mappable = mpl.cm.ScalarMappable(norm=norm, cmap=cmap)
- directions = [0, 180] # right, left
- figs = []
- for d in directions:
- # right
- mne.viz.set_3d_view(fig_3d, azimuth=d, elevation=70)
- xy, im = mne.viz.snapshot_brain_montage(fig_3d, info, hide_sensors=False)
- fig, ax = plt.subplots(figsize=(5, 5))
- ax.imshow(im, interpolation='none')
- ax.set_axis_off()
- if data is not None:
- fig.subplots_adjust(right=0.8)
- cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
- fig.colorbar(mappable, cax=cbar_ax)
- if show_name:
- xy_pts = np.vstack([xy[ch] for ch in info["ch_names"]])
- for i, pos in enumerate(xy_pts):
- ax.text(*pos, i, color='white')
- figs.append(fig)
- return figs
- def plot_time_frequency(data, events, sfreq, freqs, epoch_time_range, event_id):
- """
- data: numpy.ndarray, (n_ch, n_times)
- events: ndarray (n_events, 3), the first column is onset index, the second is duration, and the third is event type
- freqs: numpy.ndarray, frequency bands to filter
- epoch_time_range: tuple, (t_onset, t_offset)
- event_id: dict {id: name}
- """
- # extract power, (n_ch, n_freqs, n_times)
- power = filterbank_extractor(data, sfreq, freqs, reshape_freqs_dim=False)
- power = 10 * np.log10(power)
- # normalize by freqs
- power -= power.mean(axis=(0, 2), keepdims=True)
- power /= power.std(axis=(0, 2), keepdims=True)
- # image vlim
- mean_, std_ = power.mean(), power.std()
- # cut epochs
- epochs = cut_epochs((*epoch_time_range, sfreq), power, events[:, 0])
- # average by event type
- classes = np.unique(events[:, -1])
- fig, axes = plt.subplots(1, len(classes), figsize=(10, 5))
- for ax, y_ in zip(axes, classes):
- average_power = epochs[events[:, -1] == y_].mean(axis=(0, 1)) # keep freqencies and times
- im = ax.imshow(average_power, cmap='RdBu_r',
- vmin=mean_ - 0.5 * std_,
- vmax=mean_ + 0.5 * std_,
- aspect='auto',
- origin='lower')
- ax.set_xticks(np.linspace(-0.5, average_power.shape[1] - 0.5, 5))
- ax.set_xticklabels([f'{i:.2f}' for i in np.linspace(*epoch_time_range, 5)])
- ax.set_yticks(np.linspace(-0.5, average_power.shape[0] - 0.5, 10))
- ax.set_yticklabels([f'{int(i):3d}' for i in np.linspace(freqs[0], freqs[-1], 10)])
- ax.set_title(event_id[y_])
- fig.subplots_adjust(right=0.8)
- cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
- fig.colorbar(im, cax=cbar_ax)
- return fig
- def plot_ersd(data, events, sfreq, epoch_time_range, event_id, rest_event=0):
- n_ch = data.shape[0]
- event_desc = {v:k for k, v in event_id.items()}
- epochs = cut_epochs((*epoch_time_range, sfreq), data, events[:, 0])
- psd, freqs = psd_array_multitaper(epochs, sfreq, fmin=0, fmax=200, bandwidth=15)
- mean_psd_rest = psd[events[:, -1] == rest_event].mean(axis=0)
- ersds = []
- for e in np.unique(events[:, -1]):
- if e != rest_event:
- mean_psd = psd[events[:, -1] == e].mean(axis=0)
- ersd = mean_psd / mean_psd_rest - 1
- ersds.append((event_desc[e], ersd))
- fig, axes = plt.subplots(n_ch, len(ersds), figsize=(3 * len(ersds), n_ch), sharex=True, sharey=True)
- for i in range(n_ch):
- if len(ersds) == 1:
- for j, ersd in enumerate(ersds):
- if i == 0:
- axes[i].set_title(ersd[0])
- axes[i].plot(freqs, ersd[1][i])
- axes[i].set_ylabel(f'ch_{i + 1}')
- axes[i].axhline(0, color='gray', linestyle='--')
- else:
- for j, ersd in enumerate(ersds):
- if i == 0:
- axes[i, j].set_title(ersd[0])
- axes[i, j].plot(freqs, ersd[1][i])
- axes[i, j].set_ylabel(f'ch_{i + 1}')
- axes[i, j].axhline(0, color='gray', linestyle='--')
- fig.suptitle('ERSD')
- return fig
- def plot_confusion_matrix(y_true, y_pred):
- cm = confusion_matrix(y_true, y_pred)
- disp = ConfusionMatrixDisplay(cm)
- disp.plot()
- return disp.figure_
- def plot_states(time_range, pred_states, ax):
- classes = np.unique(pred_states)
- for i, c in enumerate(classes):
- ax.fill_between(np.linspace(*time_range, len(pred_states)), 0, 1,
- where=(pred_states == c), alpha=0.6, color=plt.get_cmap('tab10')(i)[:3])
- return ax
- def plot_state_prob_with_cue(time_range, true_states, pred_probs, ax):
- # normalize
- y_lim = pred_probs.max()
- ax.plot(np.linspace(*time_range, len(pred_probs)), pred_probs, color='k')
- ax.set_ylim([0, y_lim])
- # for each class, fill different colors
- classes = np.unique(true_states)
- for i, c in enumerate(classes):
- ax.fill_between(np.linspace(*time_range, len(true_states)), 0, y_lim,
- where=(true_states == c), alpha=0.6, color=plt.get_cmap('tab10')(i)[:3])
- return ax
|