123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258 |
- import joblib
- import numpy as np
- import random
- import logging
- import os
- from scipy import signal
- from .utils import parse_model_type
- logger = logging.getLogger(__name__)
- class Controller:
- """在线控制接口
- 运行时主要调用decision方法,
- 每次气动手反馈后调用reset_buffer方法,用以跳过气动手不应期
- Args:
- virtual_feedback_rate (float): 0-1之间浮点数,控制假反馈占比
- model_path (string): 模型文件路径
- buffer_steps (int):
- """
- def __init__(self,
- virtual_feedback_rate=1.,
- real_feedback_model=None):
-
- self.real_feedback_model = real_feedback_model
- self.virtual_feedback_rate = virtual_feedback_rate
- def step_decision(self, data, true_label=None):
- """抓握训练调用接口,只进行单次判决,不涉及马尔可夫过程,
- 假反馈的错误反馈默认输出为10000
- Args:
- data (mne.io.RawArray): 数据
- true_label (None or int): 训练时假反馈的真实标签
- Return:
- int: 统一化标签 (-1: keep, 0: rest, 1: cylinder, 2: ball, 3: flex, 4: double, 5: treble)
- """
- virtual_feedback = self.virtual_feedback(true_label)
- logger.debug('step_decision: virtual feedback: {}'.format(virtual_feedback))
- if virtual_feedback is not None:
- return virtual_feedback
- if self.real_feedback_model is not None:
- fs, data = self.real_feedback_model.parse_data(data)
- p = self.real_feedback_model.step_probability(fs, data)
- logger.debug('step_decison: model probability: {}'.format(str(p)))
- pred = np.argmax(p)
- real_decision = self.real_feedback_model.model.classes_[pred]
- return real_decision
- else:
- raise ValueError('Neither decision model nor true label are given')
-
- def decision(self, data, true_label=None):
- """决策主要方法,输出逻辑如下:
- 如果有决策模型,无论是否有true_label,都会使用模型进行一步决策计算并填入buffer(不一定返回)
- 如果有true_label(训练模式),产生一个随机数确定本trial是否为假反馈,
- 是假反馈,产生一个随机数确定本trial产生正确or错误的假反馈,假反馈的标签为10000
- 不是假反馈,使用模型决策
- 如果没有true_label(测试模式),直接使用模型决策
- 模型决策逻辑:
- 根据模型记录的last_state,
- 如果当前state和last_state相同,输出-1
- 如果当前state和last_state不同,输出当前state
- Args:
- data (mne.io.RawArray): 数据
- true_label (None or int): 训练时假反馈的真实标签
- Return:
- int: 统一化标签 (-1: keep, 0: rest, 1: cylinder, 2: ball, 3: flex, 4: double, 5: treble)
- """
- if self.real_feedback_model is not None:
- real_decision = self.real_feedback_model.viterbi(data)
- # map to unified label
- if real_decision != -1:
- real_decision = self.real_feedback_model.model.classes_[real_decision]
-
- virtual_feedback = self.virtual_feedback(true_label)
- if virtual_feedback is not None:
- return virtual_feedback
-
- # true_label is None or not running virtual feedback in this trial
- # if no real model, raise ValueError
- if self.real_feedback_model is None:
- raise ValueError('Neither decision model nor true label are given')
- return real_decision
- def virtual_feedback(self, true_label=None):
- if true_label is not None:
- p = random.random()
- if p < self.virtual_feedback_rate: # virtual feedback (error rate 0.2)
- p_correct = random.random()
- if p_correct < 0.8:
- return true_label
- else:
- return 10000
- return None
- class HMMModel:
- def __init__(self, transmat=None, n_classes=2, state_trans_prob=0.6, state_change_threshold=0.5):
- self.n_classes = n_classes
- self._probability = np.zeros(n_classes)
- self.reset_state()
- self.state_change_threshold = state_change_threshold
- if transmat is None:
- # build state transition matrix
- self.state_trans_matrix = np.zeros((n_classes, n_classes))
- # fill diagonal
- np.fill_diagonal(self.state_trans_matrix, state_trans_prob)
- # fill 0 -> each state,
- self.state_trans_matrix[0, 1:] = (1 - state_trans_prob) / (n_classes - 1)
- self.state_trans_matrix[1:, 0] = 1 - state_trans_prob
- else:
- if isinstance(transmat, str):
- transmat = np.loadtxt(transmat)
- self.state_trans_matrix = transmat
- # emission probability moving average, (5 steps)
- self._filter_b = np.ones(5) / 5
- self._z = np.zeros((len(self._filter_b) - 1, n_classes))
- def reset_state(self):
- self._probability[0] = 1.
- self._last_state = 0
-
- def set_current_state(self, current_state):
- self._last_state = current_state
- self._probability = np.zeros(self.n_classes)
- self._probability[current_state] = 1
-
- def step_probability(self, fs, data):
- # do preprocessing here
- # common average
- data -= data.mean(axis=0)
- return data
-
- def parse_data(self, data):
- fs, event, data_array = data
- return fs, data_array
-
- def filter_prob(self, probs):
- """
- Args:
- probs (np.ndarray): (n_classes,)
- Returns:
- filtered_probs (np.ndarray): (n_classes,)
- """
- filtered_probs, self._z = signal.lfilter(self._filter_b, 1, probs[None], axis=0, zi=self._z)
- return filtered_probs.squeeze()
-
- def viterbi(self, data, return_step_p=False):
- """
- Interface for class decision
- """
- fs, data = self.parse_data(data)
- p = self.step_probability(fs, data)
- # smooth p
- p = self.filter_prob(p)
- if return_step_p:
- return p, self.update_state(p)
- else:
- return self.update_state(p)
-
- def update_state(self, current_p):
- # veterbi algorithm
- self._probability = (self.state_trans_matrix * self._probability.T).sum(axis=1) * current_p
- # normalize
- self._probability /= np.sum(self._probability)
- logger.debug("viterbi probability, {}".format(str(self._probability)))
- current_state = np.argmax(self._probability)
- if current_state == self._last_state:
- return -1
- else:
- if self._probability[current_state] > self.state_change_threshold:
- self.set_current_state(current_state)
- return current_state
- else:
- return -1
-
- @property
- def probability(self):
- return self._probability.copy()
- class BaselineHMM(HMMModel):
- def __init__(self, model, **kwargs):
- if isinstance(model, str):
- model = joblib.load(model)
- self.feat_extractor, self.model = model
- super(BaselineHMM, self).__init__(n_classes=len(self.model.classes_), **kwargs)
-
- def step_probability(self, fs, data):
- """Step
- """
- data = super(BaselineHMM, self).step_probability(fs, data)
- # filter data
- filter_bank_data = self.feat_extractor.transform(data)
- # downsampling
- decimate_rate = np.sqrt(fs / 10).astype(np.int16)
- filter_bank_data = signal.decimate(filter_bank_data, decimate_rate, axis=-1, zero_phase=True)
- filter_bank_data = signal.decimate(filter_bank_data, decimate_rate, axis=-1, zero_phase=True)
- # predict proba
- p = self.model.predict_proba(filter_bank_data[None]).squeeze()
- return p
- class RiemannHMM(HMMModel):
- def __init__(self, model, **kwargs):
- if isinstance(model, str):
- model = joblib.load(model)
- self.feat_extractor, self.scaler, self.cov, self.model = model
- super(RiemannHMM, self).__init__(n_classes=len(self.model.classes_), **kwargs)
- def step_probability(self, fs, data):
- """Step
- """
- data = super(RiemannHMM, self).step_probability(fs, data)
- data = self.feat_extractor.transform(data)
- data = data[None] # pad trial dimension
- # scale data
- data = self.scaler.transform(data)
- # compute cov
- data = self.cov.transform(data)
- # predict proba
- p = self.model.predict_proba(data).squeeze()
- return p
- def model_loader(model_path, **kwargs):
- """
- 模型如果存在训练好的transmat,会直接load
- """
- model_root, model_filename = os.path.dirname(model_path), os.path.basename(model_path)
- model_name = model_filename.split('.')[0]
- transmat_path = os.path.join(model_root, model_name + '_transmat.txt')
- if os.path.isfile(transmat_path):
- transmat = np.loadtxt(transmat_path)
- else:
- transmat = None
- kwargs['transmat'] = transmat
- model_type, _ = parse_model_type(model_path)
- if model_type == 'baseline':
- return BaselineHMM(model_path, **kwargs)
- elif model_type == 'riemann':
- return RiemannHMM(model_path, **kwargs)
- else:
- raise ValueError(f'Unexpected model type: {model_type}, expect "baseline" or "riemann"')
|