test_online.py 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293
  1. import os
  2. import shutil
  3. import random
  4. import bci_core.online as online
  5. import training
  6. from dataloaders import neo
  7. from online_sim import DataGenerator
  8. import unittest
  9. import numpy as np
  10. from glob import glob
  11. class TestOnline(unittest.TestCase):
  12. @classmethod
  13. def setUpClass(cls):
  14. root_path = './tests/data'
  15. raw, event_id = neo.raw_loader(root_path, {'flex': ['1']}, reref_method='bipolar')
  16. model = training.train_model(raw, event_id, model_type='baseline')
  17. training.model_saver(model, root_path, 'baseline', 'f77cbe10a8de473992542e9f4e913a66', event_id)
  18. cls.model_root = os.path.join(root_path, 'f77cbe10a8de473992542e9f4e913a66')
  19. cls.model_path = glob(os.path.join(root_path, 'f77cbe10a8de473992542e9f4e913a66', '*.pkl'))[0]
  20. raw, event_id = neo.raw_loader(root_path, {'flex': ['1']}, reref_method='monopolar')
  21. cls.data_gen = DataGenerator(raw.info['sfreq'], raw.get_data())
  22. @classmethod
  23. def tearDownClass(cls) -> None:
  24. shutil.rmtree(cls.model_root)
  25. return super().tearDownClass()
  26. def test_step_feedback(self):
  27. model_hmm = online.model_loader(self.model_path)
  28. controller = online.Controller(0, model_hmm, reref_method='bipolar')
  29. rets = []
  30. for time, data in self.data_gen.loop():
  31. cls = controller.step_decision(data)
  32. rets.append(cls)
  33. self.assertTrue(np.allclose(np.unique(rets), [0, 3]))
  34. def test_virtual_feedback(self):
  35. controller = online.Controller(1, None)
  36. n_trial = 1000
  37. correct = 0
  38. for _ in range(n_trial):
  39. label = random.randint(0, 1)
  40. ret = controller.decision(None, label)
  41. if ret == label:
  42. correct += 1
  43. self.assertTrue(abs(correct / n_trial - 0.8) < 0.1)
  44. correct = 0
  45. for _ in range(n_trial):
  46. label = random.randint(0, 1)
  47. ret = controller.step_decision(None, label)
  48. if ret == label:
  49. correct += 1
  50. self.assertTrue(abs(correct / n_trial - 0.8) < 0.1)
  51. def test_real_feedback(self):
  52. model_hmm = online.model_loader(self.model_path)
  53. controller = online.Controller(0, model_hmm, reref_method='bipolar')
  54. rets = []
  55. for i, (time, data) in zip(range(300), self.data_gen.loop()):
  56. cls = controller.decision(data)
  57. rets.append(cls)
  58. self.assertTrue(np.allclose(np.unique(rets), [-1, 0, 3]))
  59. class TestHMM(unittest.TestCase):
  60. def test_state_transfer(self):
  61. # binary
  62. probs = [[0.9, 0.1], [0.5, 0.5], [0.09, 0.91], [0.5, 0.5], [0.3, 0.7], [0.7, 0.3], [0.92,0.08]]
  63. true_state = [-1, -1, 1, -1, -1, -1, 0]
  64. model = online.HMMModel(transmat=None, n_classes=2, state_trans_prob=0.9, state_change_threshold=0.7)
  65. states = []
  66. for p in probs:
  67. cur_state = model.update_state(p)
  68. states.append(cur_state)
  69. self.assertTrue(np.allclose(states, true_state))
  70. # triple
  71. probs = [[0.8, 0.1, 0.1], [0.01, 0.91, 0.09], [0.01, 0.08, 0.91], [0.5, 0.2, 0.3], [0.9, 0.05, 0.02], [0.01, 0.01, 0.98]]
  72. true_state = [-1, 1, -1, -1, 0, 2]
  73. model = online.HMMModel(transmat=None, n_classes=3, state_trans_prob=0.9)
  74. states = []
  75. for p in probs:
  76. cur_state = model.update_state(p)
  77. states.append(cur_state)
  78. self.assertTrue(np.allclose(states, true_state))