123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 |
- import numpy as np
- import os
- import json
- import mne
- import glob
- import pyedflib
- from .utils import upsample_events
- from settings.config import settings
- FINGERMODEL_IDS = settings.FINGERMODEL_IDS
- FINGERMODEL_IDS_INVERSE = settings.FINGERMODEL_IDS_INVERSE
- CONFIG_INFO = settings.CONFIG_INFO
- def raw_loader(data_root, session_paths:dict,
- do_rereference=True,
- upsampled_epoch_length=1.,
- ori_epoch_length=5):
- """
- Params:
- data_root:
- session_paths: dict of lists
- do_rereference (bool): do common average rereference or not
- upsampled_epoch_length (None or float): None: do not do upsampling
- ori_epoch_length (int or 'varied'): original epoch length in second
- """
- raws_loaded = load_sessions(data_root, session_paths, do_rereference)
- # process event
- raws = []
- event_id = {}
- for (finger_model, raw) in raws_loaded:
- fs = raw.info['sfreq']
- {d: int(d) for d in np.unique(raw.annotations.description)}
- events, _ = mne.events_from_annotations(raw, event_id={d: int(d) for d in np.unique(raw.annotations.description)})
- event_id = event_id | {FINGERMODEL_IDS_INVERSE[int(d)]: int(d) for d in np.unique(raw.annotations.description)}
-
- if isinstance(ori_epoch_length, int) or isinstance(ori_epoch_length, float):
- trial_duration = ori_epoch_length
- elif ori_epoch_length == 'varied':
- trial_duration = None
- else:
- raise ValueError(f'Unsupported epoch_length {ori_epoch_length}')
- events = reconstruct_events(events, fs,
- trial_duration=trial_duration)
- if upsampled_epoch_length is not None:
- events = upsample_events(events, int(fs * upsampled_epoch_length))
-
- event_desc = {e: FINGERMODEL_IDS_INVERSE[e] for e in np.unique(events[:, 2])}
- annotations = mne.annotations_from_events(events, fs, event_desc)
- raw.set_annotations(annotations)
- raws.append(raw)
- raws = mne.concatenate_raws(raws)
- raws.load_data()
- return raws, event_id
- def preprocessing(raw, do_rereference=True):
- raw.load_data()
- if do_rereference:
- # common average
- raw.set_eeg_reference('average')
- # high pass
- raw = raw.filter(1, None)
- # filter 50Hz
- raw = raw.notch_filter([50, 100, 150], trans_bandwidth=3, verbose=False)
- return raw
- def reconstruct_events(events, fs, trial_duration=5):
- """重构出事件序列中的单独运动事件
- Args:
- events (np.ndarray):
- fs (float):
- trial_duration (float or None or dict): None means variable epoch length, dict means there are different trial durations for different trials
- """
- # Trial duration are fixed to be ? seconds.
- # extract trials
-
- trials_ind_deduplicated = np.flatnonzero(np.diff(events[:, 2], prepend=0) != 0)
- events_new = events[trials_ind_deduplicated]
- if trial_duration is None:
- events_new[:-1, 1] = np.diff(events_new[:, 0])
- events_new[-1, 1] = events[-1, 0] - events_new[-1, 0]
- elif isinstance(trial_duration, dict):
- for e in trial_duration.keys():
- events_new[events_new[:, 2] == e] = trial_duration[e]
- else:
- events_new[:, 1] = int(trial_duration * fs)
- return events_new
- def load_sessions(data_root, session_names: dict, do_rereference=True):
- # return raws for different finger models on an interleaved manner
- raw_cnt = sum(len(session_names[k]) for k in session_names)
- raws = []
- i = 0
- while i < raw_cnt:
- for finger_model in session_names.keys():
- try:
- s = session_names[finger_model].pop(0)
- i += 1
- except IndexError:
- continue
- if glob.glob(os.path.join(data_root, s, 'evt.bdf')):
- # neo format
- raw = load_neuracle(os.path.join(data_root, s))
- else:
- # kraken format
- data_file = glob.glob(os.path.join(data_root, s, '*.bdf'))[0]
- raw = mne.io.read_raw_bdf(data_file)
- # preprocess raw
- raw = preprocessing(raw, do_rereference)
- # append list
- raws.append((finger_model, raw))
- return raws
- def load_neuracle(data_dir, data_type='ecog'):
- """
- neuracle file loader
- :param
- data_dir: root data dir for the experiment
- sfreq:
- data_type:
- :return:
- raw: mne.io.RawArray
- """
- f = {
- 'data': os.path.join(data_dir, 'data.bdf'),
- 'evt': os.path.join(data_dir, 'evt.bdf'),
- 'info': os.path.join(data_dir, 'recordInformation.json')
- }
- # read json
- with open(f['info'], 'r') as json_file:
- record_info = json.load(json_file)
- start_time_point = record_info['DataFileInformations'][0]['BeginTimeStamp']
- sfreq = record_info['SampleRate']
- # read data
- f_data = pyedflib.EdfReader(f['data'])
- ch_names = f_data.getSignalLabels()
- data = np.array([f_data.readSignal(i) for i in range(f_data.signals_in_file)]) * 1e-6 # to Volt
- info = mne.create_info(ch_names, sfreq, [data_type] * len(ch_names))
- raw = mne.io.RawArray(data, info)
- # read event
- try:
- f_evt = pyedflib.EdfReader(f['evt'])
- onset, duration, content = f_evt.readAnnotations()
- onset = np.array(onset) - start_time_point * 1e-3 # correct by start time point
- onset = (onset * sfreq).astype(np.int64)
- try:
- content = content.astype(np.int64) # use original event code
- except ValueError:
- event_mapping = {c: i for i, c in enumerate(np.unique(content))}
- content = [event_mapping[i] for i in content]
- duration = (np.array(duration) * sfreq).astype(np.int64)
- events = np.stack((onset, duration, content), axis=1)
-
- annotations = mne.annotations_from_events(events, sfreq)
- raw.set_annotations(annotations)
- except OSError:
- pass
- return raw
|