neo.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168
  1. import numpy as np
  2. import os
  3. import json
  4. import mne
  5. import glob
  6. import pyedflib
  7. from .utils import upsample_events
  8. FINGERMODEL_IDS = {
  9. 'rest': 0,
  10. 'cylinder': 1,
  11. 'ball': 2,
  12. 'flex': 3,
  13. 'double': 4,
  14. 'treble': 5
  15. }
  16. def raw_preprocessing(data_root, session_paths:dict, epoch_time=1., epoch_length=5, rename_event=True):
  17. """
  18. Params:
  19. subj_root:
  20. session_names: dict of lists
  21. epoch_time:
  22. epoch_length (int or 'varied')
  23. rename_event (True, use unified event label, False use original)
  24. """
  25. raws_loaded = load_sessions(data_root, session_paths)
  26. # process event
  27. raws = []
  28. for (finger_model, raw) in raws_loaded:
  29. fs = raw.info['sfreq']
  30. events, _ = mne.events_from_annotations(raw)
  31. mov_trial_ind = [2, 3]
  32. rest_trial_ind = [4]
  33. if not rename_event:
  34. mov_trial_ind = [finger_model]
  35. rest_trial_ind = [0]
  36. if isinstance(epoch_length, int):
  37. trial_duration = epoch_length
  38. elif epoch_length == 'varied':
  39. trial_duration = None
  40. else:
  41. raise ValueError(f'Unsupported epoch_length {epoch_length}')
  42. events = reconstruct_events(events, fs, finger_model,
  43. mov_trial_ind=mov_trial_ind,
  44. rest_trial_ind=rest_trial_ind,
  45. trial_duration=trial_duration,
  46. use_original_label=not rename_event)
  47. events_upsampled = upsample_events(events, int(fs * epoch_time))
  48. annotations = mne.annotations_from_events(events_upsampled, fs, {FINGERMODEL_IDS[finger_model]: finger_model, FINGERMODEL_IDS['rest']: 'rest'})
  49. raw.set_annotations(annotations)
  50. raws.append(raw)
  51. raws = mne.concatenate_raws(raws)
  52. raws.load_data()
  53. # filter 50Hz
  54. raws = raws.notch_filter([50, 100, 150], trans_bandwidth=3, verbose=False)
  55. return raws
  56. def reconstruct_events(events, fs, finger_model, trial_duration=5, mov_trial_ind=[2, 3], rest_trial_ind=[4], use_original_label=False):
  57. """重构出事件序列中的单独运动事件
  58. Args:
  59. fs: int
  60. finger_model:
  61. """
  62. # Trial duration are fixed to be ? seconds.
  63. # initialRest: 1, miFailed & miSuccess: 2 & 3, rest: 4
  64. # ignore initialRest
  65. # extract trials
  66. deduplicated_mov = np.diff(np.isin(events[:, 2], mov_trial_ind), prepend=0) == 1
  67. deduplicated_rest = np.diff(np.isin(events[:, 2], rest_trial_ind), prepend=0) == 1
  68. trials_ind_deduplicated = np.flatnonzero(np.logical_or(deduplicated_mov, deduplicated_rest))
  69. events_new = events[trials_ind_deduplicated]
  70. if trial_duration is None:
  71. events_new[:-1, 1] = np.diff(events_new[:, 0])
  72. events_new[-1, 1] = events[-1, 0] - events_new[-1, 0]
  73. else:
  74. events_new[:, 1] = int(trial_duration * fs)
  75. events_final = events_new.copy()
  76. if not use_original_label and finger_model is not None:
  77. # process mov
  78. ind_mov = np.flatnonzero(np.isin(events_new[:, 2], mov_trial_ind))
  79. events_final[ind_mov, 2] = FINGERMODEL_IDS[finger_model]
  80. # process rest
  81. ind_rest = np.flatnonzero(np.isin(events_new[:, 2], rest_trial_ind))
  82. events_final[ind_rest, 2] = 0
  83. return events_final
  84. def load_sessions(data_root, session_names: dict):
  85. # return raws for different finger models on an interleaved manner
  86. raw_cnt = sum(len(session_names[k]) for k in session_names)
  87. raws = []
  88. i = 0
  89. while i < raw_cnt:
  90. for finger_model in session_names.keys():
  91. try:
  92. s = session_names[finger_model].pop(0)
  93. i += 1
  94. except IndexError:
  95. continue
  96. if glob.glob(os.path.join(data_root, s, 'evt.bdf')):
  97. # neo format
  98. raw = load_neuracle(os.path.join(data_root, s))
  99. else:
  100. # kraken format
  101. data_file = glob.glob(os.path.join(data_root, s, '*.bdf'))[0]
  102. raw = mne.io.read_raw_bdf(data_file)
  103. raws.append((finger_model, raw))
  104. return raws
  105. def load_neuracle(data_dir, data_type='ecog'):
  106. """
  107. neuracle file loader
  108. :param
  109. data_dir: root data dir for the experiment
  110. sfreq:
  111. data_type:
  112. :return:
  113. raw: mne.io.RawArray
  114. """
  115. f = {
  116. 'data': os.path.join(data_dir, 'data.bdf'),
  117. 'evt': os.path.join(data_dir, 'evt.bdf'),
  118. 'info': os.path.join(data_dir, 'recordInformation.json')
  119. }
  120. # read json
  121. with open(f['info'], 'r') as json_file:
  122. record_info = json.load(json_file)
  123. start_time_point = record_info['DataFileInformations'][0]['BeginTimeStamp']
  124. sfreq = record_info['SampleRate']
  125. # read data
  126. f_data = pyedflib.EdfReader(f['data'])
  127. ch_names = f_data.getSignalLabels()
  128. data = np.array([f_data.readSignal(i) for i in range(f_data.signals_in_file)]) * 1e-6
  129. info = mne.create_info(ch_names, sfreq, [data_type] * len(ch_names))
  130. raw = mne.io.RawArray(data, info)
  131. # read event
  132. try:
  133. f_evt = pyedflib.EdfReader(f['evt'])
  134. onset, duration, content = f_evt.readAnnotations()
  135. onset = np.array(onset) - start_time_point * 1e-3 # correct by start time point
  136. onset = (onset * sfreq).astype(np.int64)
  137. duration = (np.array(duration) * sfreq).astype(np.int64)
  138. event_mapping = {c: i for i, c in enumerate(np.unique(content))}
  139. event_ids = [event_mapping[i] for i in content]
  140. events = np.stack((onset, duration, event_ids), axis=1)
  141. annotations = mne.annotations_from_events(events, sfreq)
  142. raw.set_annotations(annotations)
  143. except OSError:
  144. pass
  145. return raw