import numpy as np import os import json import mne import glob import pyedflib from .utils import upsample_events from settings.config import settings FINGERMODEL_IDS = settings.FINGERMODEL_IDS FINGERMODEL_IDS_INVERSE = settings.FINGERMODEL_IDS_INVERSE CONFIG_INFO = settings.CONFIG_INFO def raw_loader(data_root, session_paths:dict, do_rereference=True, upsampled_epoch_length=1., ori_epoch_length=5): """ Params: data_root: session_paths: dict of lists do_rereference (bool): do common average rereference or not upsampled_epoch_length (None or float): None: do not do upsampling ori_epoch_length (int or 'varied'): original epoch length in second """ raws_loaded = load_sessions(data_root, session_paths, do_rereference) # process event raws = [] event_id = {} for (finger_model, raw) in raws_loaded: fs = raw.info['sfreq'] {d: int(d) for d in np.unique(raw.annotations.description)} events, _ = mne.events_from_annotations(raw, event_id={d: int(d) for d in np.unique(raw.annotations.description)}) event_id = event_id | {FINGERMODEL_IDS_INVERSE[int(d)]: int(d) for d in np.unique(raw.annotations.description)} if isinstance(ori_epoch_length, int) or isinstance(ori_epoch_length, float): trial_duration = ori_epoch_length elif ori_epoch_length == 'varied': trial_duration = None elif isinstance(ori_epoch_length, dict): trial_duration = ori_epoch_length else: raise ValueError(f'Unsupported epoch_length {ori_epoch_length}') events = reconstruct_events(events, fs, trial_duration=trial_duration) if upsampled_epoch_length is not None: events = upsample_events(events, int(fs * upsampled_epoch_length)) event_desc = {e: FINGERMODEL_IDS_INVERSE[e] for e in np.unique(events[:, 2])} annotations = mne.annotations_from_events(events, fs, event_desc) raw.set_annotations(annotations) raws.append(raw) raws = mne.concatenate_raws(raws) raws.load_data() return raws, event_id def preprocessing(raw, do_rereference=True): raw.load_data() if do_rereference: # common average raw.set_eeg_reference('average') # high pass raw = raw.filter(1, None) # filter 50Hz raw = raw.notch_filter([50, 100, 150], trans_bandwidth=3, verbose=False) return raw def reconstruct_events(events, fs, trial_duration=5): """重构出事件序列中的单独运动事件 Args: events (np.ndarray): fs (float): trial_duration (float or None or dict): None means variable epoch length, dict means there are different trial durations for different trials """ # Trial duration are fixed to be ? seconds. # extract trials trials_ind_deduplicated = np.flatnonzero(np.diff(events[:, 2], prepend=0) != 0) events_new = events[trials_ind_deduplicated] if trial_duration is None: events_new[:-1, 1] = np.diff(events_new[:, 0]) events_new[-1, 1] = events[-1, 0] - events_new[-1, 0] elif isinstance(trial_duration, dict): for e in trial_duration.keys(): events_new[events_new[:, 2] == e, 1] = int(trial_duration[e] * fs) else: events_new[:, 1] = int(trial_duration * fs) return events_new def load_sessions(data_root, session_names: dict, do_rereference=True): # return raws for different finger models on an interleaved manner raw_cnt = sum(len(session_names[k]) for k in session_names) raws = [] i = 0 while i < raw_cnt: for finger_model in session_names.keys(): try: s = session_names[finger_model].pop(0) i += 1 except IndexError: continue if glob.glob(os.path.join(data_root, s, 'evt.bdf')): # neo format raw = load_neuracle(os.path.join(data_root, s)) else: # kraken format data_file = glob.glob(os.path.join(data_root, s, '*.bdf'))[0] raw = mne.io.read_raw_bdf(data_file) # preprocess raw raw = preprocessing(raw, do_rereference) # append list raws.append((finger_model, raw)) return raws def load_neuracle(data_dir, data_type='ecog'): """ neuracle file loader :param data_dir: root data dir for the experiment sfreq: data_type: :return: raw: mne.io.RawArray """ f = { 'data': os.path.join(data_dir, 'data.bdf'), 'evt': os.path.join(data_dir, 'evt.bdf'), 'info': os.path.join(data_dir, 'recordInformation.json') } # read json with open(f['info'], 'r') as json_file: record_info = json.load(json_file) start_time_point = record_info['DataFileInformations'][0]['BeginTimeStamp'] sfreq = record_info['SampleRate'] # read data f_data = pyedflib.EdfReader(f['data']) ch_names = f_data.getSignalLabels() data = np.array([f_data.readSignal(i) for i in range(f_data.signals_in_file)]) * 1e-6 # to Volt info = mne.create_info(ch_names, sfreq, [data_type] * len(ch_names)) raw = mne.io.RawArray(data, info) # read event try: f_evt = pyedflib.EdfReader(f['evt']) onset, duration, content = f_evt.readAnnotations() onset = np.array(onset) - start_time_point * 1e-3 # correct by start time point onset = (onset * sfreq).astype(np.int64) try: content = content.astype(np.int64) # use original event code except ValueError: event_mapping = {c: i for i, c in enumerate(np.unique(content))} content = [event_mapping[i] for i in content] duration = (np.array(duration) * sfreq).astype(np.int64) events = np.stack((onset, duration, content), axis=1) annotations = mne.annotations_from_events(events, sfreq) raw.set_annotations(annotations) except OSError: pass return raw