import numpy as np from sklearn.linear_model import LogisticRegression from pyriemann.tangentspace import TangentSpace from pyriemann.preprocessing import Whitening from sklearn.pipeline import make_pipeline from sklearn.base import BaseEstimator, TransformerMixin from mne.decoding import Vectorizer class FeatureSelector(BaseEstimator, TransformerMixin): def __init__(self, feature_type, lfb_dim, hgs_dim): self.feature_type = feature_type self.lfb_dim = lfb_dim self.hgs_dim = hgs_dim def fit(self, X, y=None): return self def transform(self, X, y=None): if self.feature_type == 'lfb': return X[:, 0:self.lfb_dim, 0:self.lfb_dim].copy() else: return X[:, self.lfb_dim:self.lfb_dim + self.hgs_dim, self.lfb_dim:self.lfb_dim + self.hgs_dim].copy() class ChannelScaler(BaseEstimator, TransformerMixin): def __init__(self, norm_axis=(0, 2)): self.channel_mean_ = None self.channel_std_ = None self.norm_axis=norm_axis def fit(self, X, y=None): ''' :param X: 3d array with shape (n_epochs, n_channels, n_times) :param y: :return: ''' self.channel_mean_ = np.mean(X, axis=self.norm_axis, keepdims=True) self.channel_std_ = np.std(X, axis=self.norm_axis, keepdims=True) return self def transform(self, X, y=None): X = X.copy() X -= self.channel_mean_ X /= self.channel_std_ return X def riemann_model(C=1.): return make_pipeline( Whitening(metric='riemann', dim_red={'expl_var': 0.99}), TangentSpace(), LogisticRegression(C=C) ) def baseline_model(C=1.): return make_pipeline( ChannelScaler(), Vectorizer(), LogisticRegression(C=C) )