|
@@ -2,7 +2,7 @@ import numpy as np
|
|
|
|
|
|
from .model import riemann_feature_embedder, baseline_feature_embedder
|
|
from .model import riemann_feature_embedder, baseline_feature_embedder
|
|
from .feature_extractors import FeatExtractor, FilterbankExtractor
|
|
from .feature_extractors import FeatExtractor, FilterbankExtractor
|
|
-from .utils import cut_epochs, events_filter
|
|
|
|
|
|
+from .utils import cut_epochs
|
|
|
|
|
|
|
|
|
|
def riemann_model_builder(fs, n_ch=8, lf_bands=[(15, 35), (35, 50)], hg_bands=[(55, 95), (105, 145)]):
|
|
def riemann_model_builder(fs, n_ch=8, lf_bands=[(15, 35), (35, 50)], hg_bands=[(55, 95), (105, 145)]):
|
|
@@ -29,10 +29,6 @@ def data_evaluation(model, raw: np.ndarray, fs, events=None, duration=None, retu
|
|
filtered_data = feat_extractor.transform(raw)
|
|
filtered_data = feat_extractor.transform(raw)
|
|
if (events is not None) and (duration is not None):
|
|
if (events is not None) and (duration is not None):
|
|
X = cut_epochs((0, duration, fs), filtered_data, events[:, 0])
|
|
X = cut_epochs((0, duration, fs), filtered_data, events[:, 0])
|
|
- #
|
|
|
|
- indices = events_filter(X, fs, events)
|
|
|
|
- X = X[indices]
|
|
|
|
- y_true = events[:, 2][indices]
|
|
|
|
else:
|
|
else:
|
|
X = filtered_data[None]
|
|
X = filtered_data[None]
|
|
# embed feature
|
|
# embed feature
|
|
@@ -41,7 +37,7 @@ def data_evaluation(model, raw: np.ndarray, fs, events=None, duration=None, retu
|
|
prob = clf.predict_proba(X_embed)
|
|
prob = clf.predict_proba(X_embed)
|
|
if return_cls:
|
|
if return_cls:
|
|
y_pred = clf.classes_[np.argmax(prob, axis=1)]
|
|
y_pred = clf.classes_[np.argmax(prob, axis=1)]
|
|
- return prob, y_pred, y_true
|
|
|
|
|
|
+ return prob, y_pred
|
|
else:
|
|
else:
|
|
return prob
|
|
return prob
|
|
|
|
|