|
@@ -7,6 +7,8 @@ import mne
|
|
|
from .feature_extractors import filterbank_extractor
|
|
|
from .utils import parse_model_type
|
|
|
|
|
|
+logger = logging.getLogger(__name__)
|
|
|
+
|
|
|
|
|
|
class Controller:
|
|
|
"""在线控制接口
|
|
@@ -43,14 +45,14 @@ class Controller:
|
|
|
int: 统一化标签 (-1: keep, 0: rest, 1: cylinder, 2: ball, 3: flex, 4: double, 5: treble)
|
|
|
"""
|
|
|
virtual_feedback = self.virtual_feedback(true_label)
|
|
|
- logging.debug('step_decision: virtual feedback: {}'.format(virtual_feedback))
|
|
|
+ logger.debug('step_decision: virtual feedback: {}'.format(virtual_feedback))
|
|
|
if virtual_feedback is not None:
|
|
|
return virtual_feedback
|
|
|
|
|
|
if self.real_feedback_model is not None:
|
|
|
fs, data = self.real_feedback_model.parse_data(data)
|
|
|
p = self.real_feedback_model.step_probability(fs, data)
|
|
|
- logging.debug('step_decison: model probability: {}'.format(str(p)))
|
|
|
+ logger.debug('step_decison: model probability: {}'.format(str(p)))
|
|
|
pred = np.argmax(p)
|
|
|
real_decision = self.real_feedback_model.model.classes_[pred]
|
|
|
return real_decision
|
|
@@ -155,7 +157,7 @@ class HMMModel:
|
|
|
self._probability = (self.state_trans_matrix * self._probability.T).sum(axis=1) * current_p
|
|
|
# normalize
|
|
|
self._probability /= np.sum(self._probability)
|
|
|
- logging.debug("viterbi probability, {}".format(str(self._probability)))
|
|
|
+ logger.debug("viterbi probability, {}".format(str(self._probability)))
|
|
|
|
|
|
current_state = np.argmax(self._probability)
|
|
|
if current_state == self._last_state:
|